Bernstein Medical Center for Hair Restoration - Hair Cloning News

Hair Cloning News

About Header Image

Jing Gao, Mindy C. DeRouen, Chih-Hsin Chen, Michael Nguyen, et. al.
Genes & Development 22:2111-2124, 2008

The growth of a hair follicle from its developmental cell stage to a hair bearing follicle is through an interactive process between epidermal cells and those of the dermal papilla. It was found that Laminin-511 is instrumental in facilitating this process.

It has been felt that the extra-cellular protein Laminin is critical to both adhesion and the signaling process in hair development; however, the mechanism is not fully understood.

Through this study, it was shown that the signaling pathways introduced by the administration of noggin and sonic hedgehog alone were insufficient to develop a hair follicle. When Laminin-511 protein was introduced to the tissue culture, the dermal papilla developed. When the protein was inhibited, hair follicle growth again ceased. This information supports prior studies suggesting that Laminin is critical in the early stages of follicle cell development and is required for continued follicle development and growth.

This study reaffirms in vitro and in vivo studies in mice, the importance of Laminin-511 in the formation of dermal papilla to promote the development of more organized dermal papilla cells and the hair follicle development. It also suggests that there is a reciprocal mechanism between the signaling pathways of noggin and sonic hedgehog with Laminin-511.

Posted by

by Jeff Teumer, PhD
Hair Transplant International Forum, Volume 18, Number 3, May/June 2008

Follicular cell implantation (FCI) is based on the ability of the dermal papilla (DP) cells, found at the bottom of hair follicles, to stimulate new hairs to form. DP cells can be grown and multiplied in a culture so that a very small number of cells can produce enough follicles to cover an entire bald scalp.

In order to produce new follicles, two types of cells must be present. The first is Keratinocytes, the major cell type in the hair follicle, and the second are dermal papillae cells (DP) which lie in the upper part of the dermis, just below the hair follicle. It appears that the DP cells can induce the overlying keratinocytes to form hair follicles. There are a number of proposed techniques for hair regeneration that use combinations of cells that are implanted in the skin. The two major techniques involve either transplanting dermal papillae cells by themselves into the skin or implanting them with keratinocytes. These techniques can be used with or without an associated matrix used to help orient the newly forming follicles.

Implanting Dermal Papillae Cells Alone

  1. Implanting DP cells by themselves into the dermis, with the hope that they will cause the overlying skin cells (keratinocytes) to be transformed from normal skin cells into hair follicles. This method is called “follicular neo-genesis” since new hair is formed where none previously existed.
  2. Cells of the dermal papillae are placed alongside miniaturized follicles. The transplanted cells would induce the keratinocytes of the miniaturized follicles to grow into a terminal hair. A potential advantage of this technique is that the existing miniaturized follicles already have the proper structure and orientation to produce a natural look growth.

Implanting Dermal Papillae with Keratinocytes

  1. A mixed suspension of cultured keratinocytes and DP cells are implanted into the skin.
  2. Keratinocytes and DP cells are cultured together such that full or partial hair formation takes place in a culture dish. These culture-grown hairs, or “proto-hairs,” are then implanted into the patient. The advantage of using a proto-hair is that there would be better control over the direction of hair growth because of the structural orientation of the proto-hair.

Cell Implantation using a Matrix

  1. A variation of the above techniques is to use a matrix to help orient the implanted cells. This could be either an artificial matrix composed of materials such Dacron or it could be a biological matrix composed of collagen or other tissue components. The matrix would act like a scaffold to help cells organize to form a follicle. If the matrix were filamentous (like a hair) it could help direct the growth of the growing follicle. A matrix could be used with dermal papillae cells alone or in combination with cultured keratinocytes.

With all of the varied approaches for FCI, the aim is to combine keratinocytes and DP cells to efficiently and reproducibly generate thousands of follicles for hair restoration. In some cases, cells are combined in vivo and all of the hair formation must take place in the body after implantation, while in others, some hair formation takes place in culture before implantation.

Posted by

Dr. Bernstein summarizes an article in the Journal of the National Cancer Institute:

Curis, Inc., a drug development company, has published data showing the effectiveness of a proprietary Hedgehog pathway activator to stimulate hair growth in adult mice. The study shows that a topically applied small molecule agonist of the Hedgehog signaling pathway can stimulate hair follicles to pass from the resting stage to the growth stage of the hair cycle. The Hedgehog agonist produces no other noticeable short or long-term changes in the skin of the mice.

This study also demonstrated that the Hedgehog agonist is active in human scalp in vitro as measured by Hedgehog pathway gene expression. The results suggest that topical application of a Hedgehog agonist could be effective in treating hair loss conditions, including male and female pattern genetic hair loss.

Preliminary results were presented at the American Academy of Dermatology (AAD) in February 2005. This work was based on a study in 2001 by Sato et. Al. who showed that the Sonic hedgehog gene is involved in the initiation of hair growth in mice.

Reference: Sato N., Leopold PL, Crystal, RG. Effect of Adenovirus-Mediated Expression of Sonic Hedgehog Gene on Hair Regrowth in Mice With Chemotherapy-Induced Alopecia. Journal of the National Cancer Institute, 2001, Vol. 93, No. 24.

Posted by



Browse Hair Restoration Answers by topic:








212-826-2400
Scroll to Top